LOYOLA COLLEGE (AUTONOMOUS) CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FOURTH SEMESTER - APRIL 2025

UMT 4501 - REAL ANALYSIS-I

Da	te: 24-04-2025 Dept. No.	Max.: 100 Marks		
Tin	ne: 09:00 AM - 12:00 PM			
SECTION A - K1 (CO1)				
	Answer ALL the Questions -	$(10 \times 1 = 10)$		
1.	Fill in the blanks			
a)	If $f(x) = x^2$, $g(x) = x$, then $(g \circ f)(x) =$.			
b)	There does not exist a rational number r such that			
c)	Every nonempty set of real numbers that has an upper bound also has a	in R.		
d)	A convergence sequence of real number is			
e)	The limit of the sequence $1 + \frac{1}{2} + \frac{1}{3} + + \frac{1}{n} - \ln n$ is called			
_	MGG			

- If A is a set with m elements and B is a set with n elements and if $A \cap B = \phi$ then $A \cup B$ has a) ---- elements.
 - (i) $m^2 + n^2$
- (ii) m-n (iii) m+n

Dept. No.

(iv) m^2

- If $a, b \in R$ then $||a| |b|| \le$ b)

- (i) |a+b| (ii) |a-b| (iii) |ab| (iv) |a+2b|
- c) If $S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$ then

- (i) $\sup S = 1$ (ii) $\inf S = 0$ (iii) $\inf S = 1$ (iv) $\sup S = 0$

- If 0 < b < 1, then $\lim(b^n) =$ d)
 - (i) 1
- (iii) ∞
- (iv) -1

- e) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent when
 - (i) p = 1
- (ii) p < 1
- (iii) p > 1 (iv) $0 \le p \le 2$

SECTION A - K2 (CO1)

Answer ALL the Questions $(10 \times 1 = 10)$

- True or False 3.
- The set of natural numbers is a finite set. a)
- If $a, b \in R$ then $|a+b| \ge |a| + |b|$. b)
- For all $a, b \in R$, |ab| = |a||b|. c)
- $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n}$ is an increasing sequence. d)
- $1+r+r^2+...+r^n+...$ is a geometric series. e)
- Answer the following 4.
- State the principle of strong induction. a)

	T			
b)	Write down Bernoulli's inequality.			
c)	State Cantor's Theorem.			
d)	Define sequence of real numbers.			
e)	Define limit of a sequence.			
	SECTION B - K3 (CO2)			
Ans	Answer any TWO of the following $(2 \times 10 = 20)$			
5.	Using the principle of mathematical induction, demonstrate that $1^3 + 2^3 + 3^3 + + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.			
6.	Establish the characterization Theorem of intervals with an appropriate proof.			
7.	Produce the proof for monotone convergence Theorem.			
8.	State Raabe's Test and hence test the convergence of the series $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdot \cdot 2n}{1 \cdot 3 \cdot 5 \cdot \cdot (2n+1)}$ using it.			
	SECTION C – K4 (CO3)			
Ans	swer any TWO of the following $(2 \times 10 = 20)$	0)		
9.	If S and T are sets and that $T \subseteq S$, T is an infinite set, then show that S is an infinite set.			
10.	Establish nested interval property with a suitable proof.			
11.	Prove that the interval $[0,1] = \{x \in R : 0 \le x \le 1\}$ is not countable.			
12.	Categorise the convergence of the series whose nth term is $\frac{1}{(n+1)(n+2)}$.			
	SECTION D – K5 (CO4)			
Ans	swer any ONE of the following $(1 \times 20 = 20)$	0)		
13.	(a) Establish that countable union of countable sets is countable.			
	(b) State and establish the density theorem. (10+1	0)		
14.	(a) State and prove Bolzano-Weierstrass Theorem.			
	(b) Test the convergence of the series $\sum a_n cosnx$ by Dirichlet's test. (12+)	8)		
SECTION E – K6 (CO5)				
Ans	swer any ONE of the following $(1 \times 20 = 20)$	0)		
15.	(a) Prove that the set of all rational numbers is denumerable.			
	(b) Develop the relation between Arithmetic mean and Geometric mean in the form of inequality as	nd		
	prove it. (8+1	2)		
16.	(a) Establish Archimedean property with an appropriate proof.			
	(b) Show that $\lim \left(\frac{3n+2}{n+1}\right) = 3$.			
	(c) Show that $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges by Cauchy's integral test. (6+6+12)	2)		

\$\$\$\$\$\$\$\$\$\$\$\$